Riluzole effects on behavioral sensitivity and the development of axonal damage and spinal modifications that occur after painful nerve root compression.
نویسندگان
چکیده
OBJECT Cervical radiculopathy is often attributed to cervical nerve root injury, which induces extensive degeneration and reduced axonal flow in primary afferents. Riluzole inhibits neuro-excitotoxicity in animal models of neural injury. The authors undertook this study to evaluate the antinociceptive and neuroprotective properties of riluzole in a rat model of painful nerve root compression. METHODS A single dose of riluzole (3 mg/kg) was administered intraperitoneally at Day 1 after a painful nerve root injury. Mechanical allodynia and thermal hyperalgesia were evaluated for 7 days after injury. At Day 7, the spinal cord at the C-7 level and the adjacent nerve roots were harvested from a subgroup of rats for immunohistochemical evaluation. Nerve roots were labeled for NF200, CGRP, and IB4 to assess the morphology of myelinated, peptidergic, and nonpeptidergic axons, respectively. Spinal cord sections were labeled for the neuropeptide CGRP and the glutamate transporter GLT-1 to evaluate their expression in the dorsal horn. In a separate group of rats, electrophysiological recordings were made in the dorsal horn. Evoked action potentials were identified by recording extracellular potentials while applying mechanical stimuli to the forepaw. RESULTS Even though riluzole was administered after the onset of behavioral sensitivity at Day 1, its administration resulted in immediate resolution of mechanical allodynia and thermal hyperalgesia (p < 0.045), and these effects were maintained for the study duration. At Day 7, axons labeled for NF200, CGRP, and IB4 in the compressed roots of animals that received riluzole treatment exhibited fewer axonal swellings than those from untreated animals. Riluzole also mitigated changes in the spinal distribution of CGRP and GLT-1 expression that is induced by a painful root compression, returning the spinal expression of both to sham levels. Riluzole also reduced neuronal excitability in the dorsal horn that normally develops by Day 7. The frequency of neuronal firing significantly increased (p < 0.045) after painful root compression, but riluzole treatment maintained neuronal firing at sham levels. CONCLUSIONS These findings suggest that early administration of riluzole is sufficient to mitigate nerve root-mediated pain by preventing development of neuronal dysfunction in the nerve root and the spinal cord.
منابع مشابه
Defining the Role of Mechanical Signals During Nerve Root Compression in the Development of Sustained Pain and Neurophysiological Correlates that Develop in the Injured Tissue and Spinal Cord
Cervical nerve root injury commonly leads to pain. The duration of an applied compression has been shown to contribute to both the onset of persistent pain and also the degree of spinal cellular and molecular responses related to nociception that are produced. This thesis uses a rat model of a transient cervical nerve root compression to study how the duration of an applied compression modulate...
متن کاملPost-Operative Time Effects after Sciatic Nerve Crush on the Number of Alpha Motoneurons, Using a Sterological Counting Method (Disector)
There are extensive evidences that show axonal processes of the nervous system (peripheral and/or central) may be degenerated after nerve injuries. Wallerian degeneration and chromatolysis are the most conspicuous phenomena that occur in response to injuries. In this research, the effects of post-operative time following sciatic nerve crush on the number of spinal motoneurons were investigated....
متن کاملDorsal root compression produces myelinated axonal degeneration near the biomechanical thresholds for mechanical behavioral hypersensitivity.
Increased sensitivity to mechanical stimuli produced by transient cervical nerve root compression is dependent on the severity of applied load. In addition, trauma in the nervous system induces local inflammation, Wallerian degeneration, and a host of other degenerative processes leading to axonal dysfunction. Here, axonal degeneration and inflammation were assessed following transient dorsal r...
متن کاملDevelopment of a duration threshold for modulating evoked neuronal responses after nerve root compression injury.
Cervical nerve roots are susceptible to compression injuries of various durations. The duration of an applied compression has been shown to contribute to both the onset of persistent pain and also the degree of spinal cellular and molecular responses related to nociception. This study investigated the relationship between peripherally-evoked activity in spinal cord neurons during a root comp...
متن کاملThe roles of mechanical compression and chemical irritation in regulating spinal neuronal signaling in painful cervical nerve root injury.
Both traumatic and slow-onset disc herniation can directly compress and/or chemically irritate cervical nerve roots, and both types of root injury elicit pain in animal models of radiculopathy. This study investigated the relative contributions of mechanical compression and chemical irritation of the nerve root to spinal regulation of neuronal activity using several outcomes. Modifications of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurosurgery. Spine
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2014